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Appendix F 
Example Problems and Calculations 
 
 
F-1.  General 
 
This appendix presents a series of example problems and calculations.  The examples illustrate the procedures 
used in the Simplified Bishop and Modified Swedish methods of slope stability analysis and provide guidance 
for checking and verifying the results of slope stability analyses.  Examples for end-of-construction and 
steady seepage conditions are presented in this appendix.  Examples for rapid drawdown are presented in 
Appendix G. 
 
 a. Manual and spreadsheet calculations of the type described here are performed to check the results of 
computer analyses of slope stability.  These analyses are performed to check the factors of safety calculated 
for the critical slip surface, and for other slip surfaces considered significant.  The slip surfaces used for these 
examples were selected to illustrate the computational procedures and are not the most critical slip surfaces 
for the slopes. 
 
 b. As discussed elsewhere in this manual, the soil mass above the slip surface is subdivided into vertical 
slices.  Computer programs use more slices than are needed for hand calculations.  Six to twelve slices are 
sufficient for hand calculations.  Fewer than 6 slices do not provide sufficient accuracy, and more than 
12 slices makes the computations unwieldy, especially for computations using graphical methods. 
 
 c. In the following examples, computations are performed beginning with the uppermost slice near the 
top of the slope and proceeding to the toe area, regardless of the direction that the slope faces.  Thus, in some 
cases the computations are performed for slices from left-to-right and in other cases for slices from right-to-
left, depending on the direction that the slope faces. 
 
 d. All of the computations for the procedures of slices were initially performed using a computer 
spreadsheet program and then summarized in tabular form.  The spreadsheet calculations were performed 
with the number of significant figures used by the spreadsheet program, with no arithmetic rounding.  Values 
were rounded as appropriate for the tables presented in this appendix.  Accordingly, some of the values may 
differ slightly from what might be calculated by hand.  For example the value shown for the term Wsin α  
may not be exactly equal to the values that would be computed using the values of the slice weight (W) and 
the slope of the base of the slice (α) shown in the tables.  Any such discrepancies caused by rounding off are 
insignificant. 
 
F-2.  Simplified Bishop Method 
 
The Simplified Bishop Method is only applicable to analyses with circular slip surfaces.  The computations 
shown here have been performed using computer spreadsheet software.  Detailed steps are presented below 
for a total stress analysis of a slope with no water and for an effective stress analysis of a slope with water, 
internal seepage, and external water loads. 
 
 a. Slope without seepage or external water loads – total stress analyses.  Computations for the 
Simplified Bishop Method for slopes, where the shear strength is expressed in terms of total stresses and 
where there are no external water loads, are illustrated in Figure F-1.  As for all of the examples presented, 
slices are numbered beginning with the uppermost slice and proceeding toward the toe of the slope.  Once a 
trial slip surface has been selected, and the soil mass is subdivided into slices, the following steps are used to 
compute a factor of safety: 
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Figure F-1.   Simplified Bishop Method with no water - total stress analyses 
 
 (1) The width, b, average height, havg, and inclination, α, of the bottom of each slice are determined 
(Columns 2, 3, and 6 in Figure F-1b).  The sign convention used throughout this appendix for the inclination, 
α, is illustrated in Figure F-2.  The inclination is positive when the base of the slice is inclined in the same 
direction as the slope. 
  
 (2) The area, A, of each slice is calculated by multiplying the width of the slice by the average height, 
i.e., A = b havg (Column 4 in Figure F-1b). 
 
 (3) The weight of each slice is calculated by multiplying the total unit weight of soil by the area of the 
slice, i.e., W = γA.  If the slice crosses zones having different unit weights, the slice is subdivided vertically 
into subareas, and the weights of the subareas are summed to compute the total slice weight (Column 5 in 
Figure F-1b). 
 
 (4) The quantity, Wsin α , is computed for each slice, and these values are summed to obtain the term in 
the denominator of the equation for the factor of safety (Column 7 in Figure F-1b). 



EM 1110-2-1902 
31 Oct 03 

 
  F-3 

 
 
Figure F-2.   Sign convention used for angles α and β 
 
 (5) The cohesion, c, and friction angle, φ, for each slice are entered in Columns 8 and 9 in Figure F-1b.  
The shear strength parameters are those for the soil at the bottom of the slice; they do not depend on the soils 
in the upper portions of the slice.   
 
 (6) The quantity c b W tan( )⋅ + φ  is computed for each slice (Column 10 in Figure F-1b).   
 
 (7) A trial value is assumed for the factor of safety and the quantity, mα, is computed from the equation 
shown below (Column 11 in Figure F-1b): 
 

 sin tan 'm cos
Fα

α φ= α +  (F-1) 

 
 (8) The numerator in the expression for the factor of safety is computed by dividing the term cb + W 
tan(φ) by mα for each slice and then summing the values for all slices (Column 12 in Figure F-1b). 
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 (9) A new factor of safety is computed from the equation: 
 

 

c b W tan
m

F
Wsin

α

⎡ ⎤⋅ + ⋅ φ
⎢ ⎥
⎣ ⎦=

α

∑
∑

 (F-2) 

 
This corresponds to dividing the summation of Column 12 by the summation of Column 7 in Figure F-1b. 
 
 (10) Additional trial values are assumed for the factor of safety and Steps 7 through 9 are repeated 
(Columns 13 through 16 in Figure F-1b).  For each trial value assumed for the factor of safety, the assumed 
value and the value computed for the factor of safety using Equation F-2 are plotted as shown in Figure F-1c.  
The chart in Figure F-1c serves as a guide for selecting additional trial values.  Values are assumed and new 
values are calculated until the assumed and calculated values for the factor of safety are essentially the same, 
i.e., until the assumed and calculated values fall close to the broken 45-degree line shown in Figure F-1c.  
 
 b.  Slope with seepage or external water loads – effective stress analyses.  Computations for slopes 
where the shear strength is expressed in terms of effective stresses, and where there are pore water pressures 
and external water loads, are illustrated in Figure F-3.  In this case, the pore water pressures on the base of 
each slice must be determined.  Loads from external water are included in all analyses, whether they are 
performed using total stress or effective stress.  External water may be represented either as another soil, as 
described in Appendix C, or as an external force.  In the description which follows, water is represented as an 
external load rather than as soil.  Accordingly, a force on the top of the slice and the moment the force 
produces about the center of the circle must be computed.  For a given trial circle, the following steps are 
required: 
 
 (1) For each slice the width, b, bottom inclination, α, and average height, havg., are determined 
(Columns 2, 3, and 6 in Figure F-3c).  The sign convention used for the angle, α, is illustrated in Figure F-2. 
 
 (2) The area of the slice, A, is computed by multiplying the width of the slice by the average height, havg. 
(Column 4 in Figure F-3c). 
 
 (3) The weight, W, of the slice is computed by multiplying the area of the slice by the total unit weight of 
soil: W = γA (Column 5 in Figure F-3c).  If the slice crosses zones having different unit weights, the slice is 
subdivided vertically into subareas, and the weights of the subareas are summed to compute the total slice 
weight  
 
 (4) The term Wsin α  is computed for each slice and then summed for all slices to compute Wsin α∑   
(Column 7 in Figure F-3c). 
 
 (5) The height, hs, of water above the slice at the midpoint of the top of the slice is determined (Column 8 
in Figure F-3c). 
 
 (6) The average water pressure on the top of the slice, psurface., is calculated by multiplying the average 
height of water, hs, by the unit weight of water (Column 9 in Figure F-3c). 
 
 (7) The inclination of the top of the slice, β, is determined (Column 10 in Figure F-3c).  The sign 
convention for this angle is shown in Figure F-2.  β is positive, except when the inclination of the top of the 
slice is opposite to the inclination of the slope.  Negative values of β will exist when the inclination of the 
slope is reversed over some distance, such as a “bench” that is inclined inward toward the slope. 
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Figure F-3.   Simplified Bishop Method with water - effective stress analyses 
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 (8) The length of the top of the slice is multiplied by the average surface pressure, psurface, to compute the 
external water force, P, on the top of the slice (Column 11 in Figure F-3c).  The force P is equal to 

surfacep b / cos( )⋅ β . 
 
 (9) The horizontal and vertical distances, dh and dv, respectively, between the center of the circle and the 
points on the top center of each slice are determined (Columns 12 and 13 in Figure F-3c).  Positive values for 
these distances are illustrated in Figure F-3b.  Loads acting at points located upslope of the center of the circle 
(to the left of the center in the case of the right-facing slope shown in Figure F-3) represent negative values 
for the distance, dh. 
 
 (10) The moment, MP, the result of external water loads is computed from the following (Column 14 in 
Figure F-3c): 
 
 P h vM Pcos d Psin d= β + β  (F-3) 
 
The moment is considered positive when it acts opposite to the direction of the driving moment produced by 
the weight of the slide mass, i.e., positive moments tend to make the slope more stable.  Positive moments are 
clockwise for a right-facing slope like the one shown in Figure F-3. 
 
 (11) The piezometric height, hp, at the center of the base of each slice is determined (Column 15 in 
Figure F-3c).  The piezometric height represents the pressure head for pore water pressures on the base of the 
slice. 
 
 (12) The piezometric height is multiplied by the unit weight of water to compute the pore water pressure, 
u (Column 16 in Figure F-3c).  For complex seepage conditions, or where a seepage analysis has been 
conducted using numerical methods, it may be more convenient to determine the pore water pressure directly, 
rather than evaluating the piezometric head and converting to pore pressure.  In such cases Step 11 is omitted, 
and the pore water pressures are entered in Column 16. 
 
 (13) The cohesion, c', and friction angle, φ', for each slice are entered in Columns 17 and 18 in 
Figure F-3c.  The shear strength parameters are those for the soil at the bottom of the slice; they do not 
depend on the soils in the upper portions of the slice.   
 
 (14) The following quantity is computed for each slice (Column 19 in Figure F-3c): 
 
 ( )c 'b W Pcos ub tan '+ + β − φ  (F-4) 
 
 (15) A trial factor of safety, F1, is assumed and the quantity, mα, is computed from the equation shown 
below (Column 20 in Figure F-3c): 
 

 
1

tan 'sinm cos
Fα

φ α= α +  (F-5) 

 
 (16) The numerator in the equation used to compute the factor of safety is calculated by dividing the term 

( )c 'b W Pcos ub tan '+ + β − φ  by mα for each slice and then summing the values for all slices (Column 21 in 
Figure F-3c). 
 
 (17) A new value is computed for the factor of safety using the following equation: 
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m

F 1Wsin M
R

α

⎡ + + β − φ ⎤
⎢ ⎥
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α −

∑

∑ ∑
 (F-6) 

 
where R is the radius of the circle.   
 
The summations computed in Columns 7, 14, and 21 of the table in Figure F-3c are used to compute the new 
value for the factor of safety. 
 
 (18) Additional trial values are assumed for the factor of safety and steps 14 through 16 are repeated 
(Columns 22 through 25 in Figure F-3c).  For each trial value assumed for the factor of safety, the assumed 
and calculated values of the factor of safety are plotted as shown in Figure F-3d, to provide a guide for 
selecting additional trial values.  Values are assumed and new values are calculated until the assumed and 
calculated values for the factor of safety are essentially equal, i.e., until the assumed and calculated values fall 
close enough to the broken 45-degree line shown in Figure F-3d. 
 
F-3.  Modified Swedish Method – Numerical Solution 
 
The factor of safety can be calculated by the Modified Swedish Method using either numerical or graphical 
procedures.  The numerical procedure is presented in this section and the graphical procedure is presented in 
Section F-4.  Detailed steps are presented below for a total stress analysis of a slope with no water outside the 
slope and for an effective stress analysis of a slope with internal seepage and external water loads. 
 
 a.  Slope without seepage or external water loads – total stress analyses.  Computations for the 
Modified Swedish Method with total stresses and no external water loads are illustrated in Figure F-4.  The 
Modified Swedish Method may be used with slip surfaces of any shape, and the procedure is the same 
regardless of the shape of the slip surface.  For simplicity, a circle has been used for the example illustrated in 
Figure F-4. Once a trial slip surface has been selected and the soil mass has been subdivided into slices, the 
steps listed below are used to compute a factor of safety.  Slices are numbered beginning with the uppermost 
slice and proceeding toward the toe of the slope. 
 
 (1) The width, b, average height, havg., and base inclination, α, are determined (Columns 2, 3 and 6 in 
Figure F-4b). 
 
 (2) The area of the slice, A, is computed by multiplying the width, b, of the slice by the average height, 
havg. (Column 4 in Figure F-4b). 
 
 (3) The weight, W, of the slice is computed by multiplying the area of the slice by the total unit weight of 
soil: W = γA (Column 5 in Figure F-4b).  If the slice crosses zones having different unit weights, the slice is 
subdivided vertically into subareas, and the weights of the subareas are summed to compute the total slice 
weight. 
 
 (4) The length of the bottom of the slice, ∆R, is determined; the length can be computed from the width, b, 
and base inclination, α: ∆R = b / cos α (Column 7 in Figure F-4b). 
 
 (5) The cohesion value, c, and friction angle, φ, are determined for the base of each slice (Columns 8 and 
9 in Figure F-4b).  The shear strength parameters are those for the soil at the bottom of the slice; they do not 
depend on the soils in the upper portions of the slice.   
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Figure F-4.   Modified Swedish Method - numerical solution with no water - total stress analysis 
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 (6) The inclination, θ, of the interslice forces is determined.  If the computations are being performed to 
check an analysis performed using Spencer’s Method, the interslice force inclination determined from 
Spencer’s Method should be used.  Otherwise, the interslice force inclination should be assumed in 
accordance with the guidelines and discussion presented in Appendix C. 
 
 (7) A trial factor of safety, F1, is assumed. 
 
 (8) Beginning with the first slice the side force, Zi+1, on the “downslope” side (left side for the slope 
illustrated in Figure F-4) of each slice is computed from the equation: 
 

 
( ) ( )i 1 i

tan cos cW sin
F FZ Z

tan sin
cos

F

+

φ α ⋅ ∆⎡ ⎤α − −⎢ ⎥⎣ ⎦= +
φ α − θ

α − θ +
 (F-7) 

 
 (9) If the force computed for the last slice, Zi+1, is not sufficiently close to zero, a new trial value is 
assumed for the factor of safety and the process is repeated.  By plotting the force imbalance, Zi+1, for the last 
slice versus the factor of safety, the value of the factor of safety that satisfies equilibrium can usually be found 
to an acceptable degree of accuracy in about three trials (Figure F-4c).  
 
 b.  Slope with seepage or external water loads – effective stress analyses.  Computations for slopes 
where the shear strength is expressed in terms of effective stresses and where there are pore water pressures 
and external water loads are illustrated in Figure F-5.  In addition to the quantities required when there is no 
water, the pore water pressures on the base of each slice, along with the forces from water on the top of the 
slice, must be determined.  For a given trial slip surface, the following steps are required: 
 
 (1) For each slice, the width, b, average height, havg., and base inclination, α, are determined (Columns 2, 
3, and 6 in Figure F-5b). 
 
 (2) The area of the slice, A, is computed by multiplying the width, b, of the slice by the average height, 
havg. (Column 4 in Figure F-5b). 
 
 (3) The weight, W, of the slice is computed by multiplying the area of the slice by the total unit weight of 
soil: W = γA (Column 5 in Figure F-5b).  If the slice crosses zones having different unit weights, the slice is 
subdivided vertically into subareas, and the weights of the subareas are summed to compute the total slice 
weight 
 
 (4) The piezometric height is determined at the upslope boundary, center and downslope boundary of 
each slice (Columns 7, 8, and 9 in Figure F-5b).  The piezometric height at the upslope and downslope 
boundaries of the slice, hi and hi+1, respectively, are used to compute the forces from water pressures on the 
sides of the slice.  Here, a triangular hydrostatic distribution of pressures is assumed on the sides of the slice.  
If the distribution of water pressures is more complex, it may be necessary to compute the water forces 
differently from what is illustrated in Figure F-5.  Assuming triangular distributions of water pressures 
provides sufficient accuracy for most analyses.  The piezometric height at the center of the slice, hp, represents 
the pressure head for pore water pressures at the base of the slice (Column 8 in Figure F-5b).  
 
 (5) Hydrostatic forces from water pressures on the sides of the slice are computed from the equations 
shown below (Columns 10 and 11 in Figure F-5b): 
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Figure F-5.   Modified Swedish Method - numerical solution with water - effective stress analysis 
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i w i

1U h
2

= γ  (F-8) 

 
and 
 

 2
i 1 w i 1

1U h
2+ += γ  (F-9) 

 
where hi and hi+1 are the heights determined in Step 4. 
 
 (6) The average height of water, hs, above the top of the slice is determined (Column 12 in Figure F-5b).  
The height is used to compute the average water pressure and eventually the total force on the top of the slice 
(See Columns 13 and 16 in Figure F-5b).  It is best to select the interslice boundaries so that a boundary is 
located at the point where the surface of the water outside the slope meets the slope.  If this is done, the water 
pressures will vary linearly across each slice, and the average height of water is equal to the height of water 
above the midpoint of the slice. 
 
 (7) The average water pressure on the top of the slice, pavg, is computed by multiplying the height of 
water, hs, by the unit weight of water (Column 13 in Figure F-5b). 
 
 (8) The inclination of the top of the slice, β, is determined (Column 14 in Figure F-5b).  This is the same 
as the inclination of the slope above the slice. 
 
 (9) The length of the top of the slice, Rtop, is determined (Column 15 in Figure F-5b).  The length can be 
computed from the relationship, Rtop = b/cos β. 
 
 (10) The water load on the top of the slice, P, is computed by multiplying the average water pressure, pavg, 
by the length of the top of the slice, Rtop (Column 16 in Figure F-5b). 
 
 (11) The length of the base of the slice, ∆R, is computed from the relationship, b / cos∆ = α (Column 18 in 
Figure F-5b). 
 
 (12) The pore water pressure is computed by multiplying the piezometric head at the center of the base of 
the slice by the unit weight of water:  u = γwhp (Column 19 in Figure F-5b).  For complex seepage conditions, 
or where a seepage analysis has been conducted using numerical methods, it may be more convenient to 
determine the pore water pressure directly, rather than evaluating the piezometric head and converting to pore 
pressure.  In such cases, the pore water pressures are entered in Column 19. 
 
 (13) The cohesion and friction angle are determined for each slice depending on the soil at the bottom of 
the slice (Columns 20 and 21 in Figure F-5b).  The shear strength parameters, c' and φ', are those for the soil 
at the bottom of the slice and do not depend on the soils located in the upper portions of the slice. 
 
 (14) The inclination, θ, of the interslice forces is determined.  If the computations are being performed to 
check an analysis performed using Spencer’s Method, the interslice force inclination determined from 
Spencer’s Method should be used.  Otherwise, the interslice force inclination should be assumed in 
accordance with the guidelines and discussion presented in Appendix C. 
 
 (15) A trial value is assumed for the factor of safety, and interslice forces are calculated, slice-by-slice, to 
determine the force imbalance or “error of closure.”  The steps for this portion of the computations are the 
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same as those described for analyses with no water pressures, except the following equation for interslice 
forces is used: 
 

( ) ( ) ( ) ( )

( ) ( )
i i 1

i 1 i

tan ' cos tan ' sin tan '
W sin U U cos P sin cos c ' u tan '

F F F FZ Z
tan ' sin

cos
F

+

+

φ α φ α φ ∆
α − + − α + + α − β − α − β − − φ

= +
φ α − θ

α − θ +

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦  (F-10) 

 
 (16) If the force computed for the last slice, Zi+1, is not sufficiently close to zero, a new trial value is 
assumed for the factor of safety and the process is repeated.  By plotting the force imbalance, Zi+1, for the last 
slice versus the factor of safety, the value of the factor of safety that satisfies equilibrium can usually be found 
to an acceptable degree of accuracy in about three trials (Figure F-5c).  
 
F-4.  Modified Swedish Method – Graphical Solution 
 
Graphical solution for the factor of safety by the Modified Swedish Method requires a trial and error process 
of assuming values for the factor of safety and constructing force equilibrium polygons until “closure” (force 
equilibrium) is established.  Detailed steps are presented below for a total stress analysis of a slope with no 
water and for an effective stress analysis of a slope with water internal seepage and external water loads. 
 
 a.  Slope without seepage or external water loads – total stress analyses.  The graphical solution 
procedure using total stresses and no water pressures is illustrated in Figures F-6 and F-7.  The calculations 
required to determine the magnitudes of the forces in the force polygons are shown in tabular form in 
Figure F-6; and the force polygons are shown in Figure F-7.  The steps for determining the factor of safety 
once a trial shear surface is selected are as follows: 
 
 (1) For each slice the width, b, and the average height, havg., are determined (Columns 2 and 3 in 
Figure F-6b).  
 
 (2) The area of the slice, A, is computed by multiplying the width, b, by the average height, havg., of each 
slice (Column 4 in Figure F-6b). 
 
 (3) The slice weight, W, is computed by multiplying the area of the slice, A, by the total unit weight of 
soil, γ: W = γA (Column 5 in Figure F-6b).  If the slice crosses zones having different unit weights, the slice is 
subdivided vertically into subareas, and the weights of the subareas are summed to compute the total slice 
weight. 
 
 (4) The base length, ∆ , for each slice is determined (Column 7 in Figure F-6).  The base length may 
either be measured from a scaled drawing of the slope or computed by dividing the slice width, b, by the 
cosine of the inclination angle, α, of the base of the slice, i.e., b / cos∆ = α . 
 
 (5) The cohesion value, c, and friction angle, φ, are determined for the base of each slice (Columns 8 and 
9 in Figure F-6b).  The shear strength parameters are those for the soil at the bottom of the slice; they do not 
depend on the soils in the upper portions of the slice.   
 
 (6) The available force resulting from cohesion is calculated by multiplying the cohesion value, c, by the 
length of the base of the slice, ∆  (Column 10 in Figure F-6b). 
 
 (7) A trial value, F1, is assumed for the factor of safety. 
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Figure F-6.   Modified Swedish Method - graphical solution with no water - slope and numerical table 
 
 (8) The “developed” force from cohesion, CD, is calculated by dividing the available force computed in 

Step 6 by the assumed value for the factor of safety: D
1

cC
F
∆=  (Column 11 in Figure F-6b). 

 (9) The “developed” friction angle, φD, is calculated from the relationship, D
1

tanarctan
F

⎛ ⎞φφ = ⎜ ⎟
⎝ ⎠

 

(Column 12 in Figure F-6b). 
 
 (10) A suitable scale for force is selected and a vector representing the weight of the slice, W1, is drawn 
vertically downward to start the equilibrium force polygons.  The force polygons are illustrated in Figure F-7.  
Steps 11 through 17, which follow, are used to complete the forces in the force polygons, and to check for 
equilibrium.  All vectors are drawn using the same force scale. 
 
 (11) A vector representing the developed cohesion force on the first slice, CD1, is drawn in a direction 
parallel to the base of the first slice, extending from the tip of the weight vector drawn in Step 10. 
 
 (12) A line is drawn from the start (tail) of the weight vector in a direction perpendicular to the base of the 
slice.  This line is shown as a broken line labeled N1 in Figure F-7b. 
 
 (13) A second line is drawn from the start (tail) of the weight vector so that the angle between the new 
line and line representing the normal vector (N1) is equal to the developed friction angle, φD.  The new line 
should be drawn such that the component of the vector parallel to the bottom of the slice acts in the direction 
of the resisting shear force, i.e., clockwise from the normal vector in the case of a left-facing slope.  This 



EM 1110-2-1902 
31 Oct 03 

 
F-14 

 
Figure F-7.   Modified Swedish method - graphical solution with no water - force polygons 
 
vector is labeled FD1 in Figure F-7b.  If the soil at the bottom of the slice has φ = 0, the lines drawn in Steps 11 
and 12 are the same, i.e., the vectors N1 and FD1 are the same. 
 
 (14) A line is drawn from the tip (end) of the developed cohesion vector, in the direction assumed for the 
interslice forces.  This line is labeled Z2 in Figure F-7b.  If the computations are being performed to check 
computations that were performed using Spencer’s Method, the interslice force inclination should be the one 
calculated in Spencer’s Method.  Otherwise, the interslice force inclination should be assumed in accordance 
with the guidelines and discussion presented in Appendix C. 
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 (15) The intersection between the line directions drawn in Step 13 (FD) and Step 14 (Z2) is found.  This 
defines the magnitudes of the forces FD1 and Z2. 
 
 (16) The process continues by drawing the equilibrium force polygon for the next slice.  A vector 
representing the weight of the slice is drawn vertically downward from the point where the cohesion and 
interslice force vectors, CD1 and Z2, intersect.  The force polygon for the second slice is shown in Figure F-7c.  
Closure of the force polygon is used to determine the magnitude of the forces FD2 and Z3 for the second slice. 
 
 (17) Force polygons are drawn consecutively, slice-by-slice, for all of the remaining slices.  If the trial 
value of factor of safety is not the correct value, the force polygon for the last slice will not close.  The error 
of closure is a measure of the inaccuracy in the assumed factor of safety.  Additional trial values for the factor 
of safety are assumed until the force polygons close with an acceptable degree of accuracy.  By plotting the 
error of closure versus the assumed values of factor of safety as shown in Figure F-6c, the correct value of 
factor of safety can usually be determined within a few trials. 
 
 b.  Slope with seepage or external water loads – effective stress analyses.  The graphical solution 
procedure for slopes where the shear strength is expressed in terms of effective stresses and where there are 
pore water pressures and external water loads are illustrated in Figures F-8 and  F-9.  The calculations 
required to determine the magnitudes of the forces in the force polygons are shown in tabular form in Figure 
F-8; and the force polygons are shown in Figure F-9.  The steps for determining the factor of safety once a 
trial shear surface is selected are as follows: 
 
 (1) The width, b, average height, havg., and length of the slice base, ∆ , are determined for each slice 
(Columns 2, 3, and 17 in Figure F-8b). 
 
 (2) The area of the slice is computed by multiplying the width, b, by the average height, havg. (Column 4 
in Figure F-8b). 
 
 (3) The weight, W, of the slice is computed by multiplying the area by the total unit weight of soil: W = 
γA (Column 5 in Figure F-8b).  If the slice crosses zones having different unit weights, the slice is subdivided 
vertically into subareas, and the weights of the subareas are summed to compute the total slice weight. 
 
 (4) The water loads on the sides and top of the slice are computed (Columns 7 thorough 16 in Figure 7b).  
The water loads are computed as described in Steps (4) through (10) in Section F-3b.   
 
 (5) The pore water pressure is computed by multiplying the piezometric head at the center of the base of 
the slice by the unit weight of water:  u =  γwhp (Column 18 in Figure F-8b).  For complex seepage conditions, 
or where a seepage analysis has been conducted using numerical methods, it may be more convenient to 
determine the pore water pressure directly, rather than evaluating the piezometric head and converting to pore 
pressure.  In such cases the pore water pressures determined directly are entered in Column 18. 
 
 (6) The force, Ub, produced by the water pressure on the bottom of the slice is computed by multiplying 
the length of the base of the slice, ∆ , by the pore water pressure, u (Column 19 in Figure F-8b). 
 
 (7) The “available” force resulting from cohesion is computed by multiplying the cohesion., c', by the 
length of the base of the slice, ∆ , (Column 22 in Figure F-8b). 
 
 (8) A trial value for the factor of safety, F, is assumed, and the developed cohesion force, CD, is 
computed by dividing the available cohesion force by the factor of safety: CD = c' ∆  / F (Column 23 in 
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Figure F-8.   Modified Swedish Method – graphical solution with water – slope and table of numerical values 
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Figure F-9.   Modified Swedish Method – graphical solution with water – force polygons 
 

Figure F-8b).  The developed friction angle, φD, is computed from the relationship, D
1

tan 'arctan
F

⎛ ⎞φφ = ⎜ ⎟
⎝ ⎠

 

(Column 24 in Figure 8b).  The trial force equilibrium polygons can now be constructed as described in the 
following steps. 
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 (9) The resultant force from the weight of the slice and any water pressures on the top, sides, and bottom 
of the slice are determined for each slice separately.  The first step in determining this resultant involves 
drawing a vector representing the water load on the top of the slice, as shown for the last slice in Figure F-9d.  
This water force vector, and all subsequent vectors, are drawn to the same scale. 
 
 (10) The second step in determining the resultant is to draw a vector representing the weight of the slice 
vertically downward from the tip of the vector representing the water loads on the top of the slice drawn in 
Step 9.  See Figures F-9c and F-9d, for the first and last slices.  If there are no external water loads, the weight 
vector is drawn from any convenient starting point, as in Figure F-9c. 
 
 (11) A vector representing the force, Ub, resulting from water pressures on the bottom of the slice is 
drawn extending from the tip of the weight vector in a direction perpendicular to the base of the slice (See Ub1 
and Ub6 in Figures F-9c and F-9d).   
 
 (12) A vector representing the difference between the forces from water pressures on the upslope and 
downslope sides of the slice, Ui – Ui+1, is drawn horizontally, starting at the tip of the vector drawn in Step 11 
(See U1-U2 and U6-U7 in Figures F-9c and F-9d). 
 
 (13) A vector, R, is drawn from the start of the vector representing the water loads, P, on the top of the 
slice, to the tip of the vector that was drawn in Step 12 to represent the water loads on the sides of the slice 
(See vector R6 in Figure F-9d).  If there is no water load on the top of the slice, the vector is drawn starting at 
the point where the weight vector, W, was started (Figure F-9c).  The R-vector closes the force polygon for 
the known water and gravity forces (Figures F-9c and F-9d).  The R-vector represents the resultant force 
produced by the slice weight and water pressures on the top, sides, and bottom of the slice.  Steps 9 through 
13 are carried out for each slice individually. 
 
 (14) The set of force polygons for the entire slope are begun by drawing a vector representing the force, 
R1, for the first slice, beginning at a convenient starting point, as shown in Figure F-9e. 
 
 (15) A vector representing the developed cohesion force, CD1, is drawn in a direction parallel to the base 
of the first slice, extending from the tip of the resultant force vector, R1, drawn in Step 14. 
 
 (16) A line is drawn from the start (tail) of the resultant force vector (R1) in a direction perpendicular to 
the base of the slice.  This line is shown as a broken line in Figure F-9e. 
 
 (17) A second line is drawn from the start (tail) of the resultant force vector (R1) such that the new line 
makes an angle equal to the developed friction angle, φD, with the vector drawn in Step 16.  The new line 
should be drawn so that the component of the vector parallel to the bottom of the slice (the shear component) 
acts in the direction of the resisting shear force, i.e., counter-clockwise from the normal vector in the case of a 
right-facing slope like the one shown in Figure F-9.  This vector is labeled FD1 in Figure F-9e. 
 
 (18) A line is drawn from the tip (end) of the developed cohesion vector, in the direction assumed for the 
interslice forces.  This line is labeled Z2 in Figure F-9e.  If hand calculations are being performed to check 
computations that were performed with Spencer’s Method, the side force inclination should be the one found 
with Spencer’s Method.  Otherwise, the side force inclination should be assumed in accordance with the 
guidelines and discussion presented in Appendix C. 
 
 (19) The intersection between the two line directions drawn in Steps 17 and 18 is found.  This determines 
the magnitude of the forces FD1 and Z2. 
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 (20) The process described above in Steps 14 through 19 is continued for the next slice, where a vector 
representing the resultant force, R2, for the second slice is drawn from the point where the developed cohesion 
vector, CD1, and interslice vector, Z2, intersect.  The force polygon for the second slice is shown in 
Figure F-9e.  Closure of the force polygon is used to determine the magnitude of the forces FD2 and Z3 for the 
second slice. 
 
 (21) Force polygons are drawn slice-by-slice for the remaining slices.  If the trial value of factor of safety 
is not the correct value, the force polygon for the last slice will not close.  This error of closure is a measure of 
the inaccuracy in the assumed value for the factor of safety.  Additional trial values are assumed for the factor 
of safety until the equilibrium force polygons close with an acceptable degree of accuracy.  By plotting the 
error of closure versus the assumed values of factor of safety as shown in Figure F-6c, the correct value of 
factor of safety can usually be determined within a few trials. 
 
F-5.  End-of-Construction (Short-Term Stability) Example 
 
Example calculations are presented for stability at the end of construction of the embankment shown in 
Figure F-10.  The embankment cross section contains two materials -- the embankment soil and the 
foundation soil.  Both soils are fine-grained and undrained during construction. 
 
 a.  Shear Strengths.  Because the soils in this case are do not drain during construction, undrained shear 
strengths are used for both.  For the embankment, samples would be prepared by compacting representative 
samples of the fill material at appropriate densities and moisture contents.  For the natural foundation soil, 
undisturbed samples would be obtained for testing. The shear strengths would be determined using 
Unconsolidated-Undrained (UU or Q) triaxial compression tests.  If the natural soil was saturated, 
Consolidated-Undrained (CU or R) or field vane shear tests could also be used to estimate undrained shear 
strengths, as described in Appendix D.  
 
 (1) Compacted, fined-grained fills are always partly saturated at the end of construction.  The foundation 
soil in this example is also assumed to be partly saturated.  Thus, the shear strengths of both soils are 
characterized by total stress friction angles greater than zero.  If the foundation soil was saturated, its total 
stress friction angle, φ, would be equal to zero.   
 
 (2) If the embankment contained zones of free-draining soils, their strengths would be characterized 
using effective stress shear strength parameters. 
 
 b. Water pressures.  For the example problem illustrated in Figure F-10, all water pressures are zero, 
because there is no external water.  If external water exists, the external water loads would be computed and 
included in the analysis in the same way they are included in the example described previously where there 
was water outside the slope.  External water loads must always be included, regardless of whether the shear 
strength is represented using total or effective stresses.  Because the strengths are characterized in terms of 
total stresses, pore water pressures within the slope are not included.  However, if the embankment contained 
free-draining soils being characterized in terms of effective stress, pore water pressures would be included in 
the analysis for these materials. 
 
 c. Unit weights.  Total unit weights are used for all soils.  Total unit weights should always be used, 
regardless of whether the shear strength is represented using total or effective stresses.  The total unit weights 
for the example problem are shown in Figure F-10b. 
 
 d. Simplified Bishop Method.   Calculations using the Simplified Bishop Method for the example are 
illustrated in Figure F-11.  Slices 6 through 10 contain both embankment and foundation soils, and these 
slices were divided into two portions for calculating the slice weights.  The average height in each soil was 
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Figure F-10.   Slope used for example calculations for end-of-construction stability condition 
 
determined and used to compute the area and weight for that portion of the slice.  The weights of two parts of 
the slices were then added to compute the total slice weight.  The bottoms of slices 1 through 5 are located in 
the embankment soil and were assigned the shear strength properties of the embankment.  The bottoms of 
slices 6 though 10 are located in the foundation, and these slices were assigned the shear strength properties of 
the foundation soil.  Computations for the final value of the factor of safety (F = 1.33) are shown in 
Columns 14 and 15 of the table in Figure F-11.  Computations were also performed for three trial values for 
the factor of safety: 1.0, 1.5, and 2.0.  The computed values for each trial value are plotted versus the assumed 
values in Figure F-11d.  As can be seen in this figure, the computed value of F varied only slightly with 
changes in the assumed value. 
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Figure F-11.   End-of-construction example – Simplified Bishop Method 
 
 e. Modified Swedish Method – numerical solution.  Calculations using numerical calculations for the 
Modified Swedish Method for the same slope are summarized in Figure F-12.  For this example the interslice 
force inclination was assumed to be equal to the average embankment slope.  The average embankment slope 
is 2.8 (horizontal) to 1 (vertical).  The side force inclination used in the calculations was θ = arctan(1/2.8) 
= 19.7 degrees.   
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Figure F-12.   Example calculations for end-of-construction stability condition – Modified Swedish Method –  
          numerical solution 
 
 (1) Many of the quantities shown in the table in Figure F-12a are the same as those for the Simplified 
Bishop Method in Figure F-11c.  Only the interslice forces Zi and Zi+1, in Columns 12 and 13 in Figure F-12a, 
are different from the Simplified Bishop Method.  The interslice forces were calculated by first assuming a 
trial value for the factor of safety, and setting Z1 for the first slice to zero.  The value of Z2 was then calculated 
from Equation F-7.  Values of the interslice forces were calculated successively for the remaining slices using 
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Equation F-7.  Calculations are shown in the table in Figure F-12a for an assumed value of factor of safety 
equal to 1.6.  The value of Zi+1 on the last slice is 75 kips, which represents the force imbalance, or error of 
closure, for this assumed factor of safety.   
 
 (2) Calculations were performed for three assumed values of factor of safety: F = 1.20, 1.40, and 1.60.  
The force imbalances for these three factors of safety are plotted versus factor of safety in Figure F-12b.  It 
can be seen from this figure that the correct value satisfying force equilibrium with essentially zero imbalance 
is approximately 1.36. 
 
 f. Modified Swedish Method – graphical solution.  Calculations for the end-of-construction example 
using the graphical solution for the Modified Swedish Method are illustrated in Figures F-13 and F-14.  The 
necessary numerical computations are shown in Figure F-13a.  Most of the calculations and values shown in 
this table are the same as those shown previously for the numerical solution in Figure F-12.  In addition, 
values for the force because of the developed cohesion, CD, and the developed friction angle, φD, are shown in 
Columns 12 and 13 of Figure F-13a.  These values are shown for only one of the assumed values for the 
factor of safety (F = 1.6). Three trial values (1.2, 1.4 and 1.6) were assumed for the factor of safety, and 
similar computations were made for each assumed value.  The error of closure (Zi+1 for the last slice) is 
plotted versus the assumed value of factor of safety in Figure F-13b.  The equilibrium force polygons are 
shown in Figure F-14 for a trial value for the factor of safety of 1.6.  For this assumed value the error of 
closure is 75 kips.  Note that the force polygons for the first three slices are shown twice in Figure F-14 to the 
same force scale as for the other slices, and to an expanded scale for clearer illustration. 
 
F-6.  Steady Seepage (Long-Term Stability) Example 
 
Figure F-15 shows an embankment with steady seepage.  The cross section contains two principal zones -- the 
embankment fill and the foundation.  There are also three smaller zones of material in the embankment: an 
upstream layer of rip-rap, an internal chimney drain and a horizontal drainage blanket.  For these example 
stability calculations, all of these smaller zones were treated as being the same as the embankment.  The trial 
slip surface used for the computations does not intersect any of the smaller zones, and their strength properties 
therefore do not influence the results of the analyses. 
 
 a. Shear strengths.  For steady-state seepage conditions, drained shear strengths characterized by c′ and 
φ′ are appropriate for all soils.  The effective stress shear strength parameters are determined using 
consolidated-drained (CD or S) test procedures for testing coarse-grained soils, and consolidated-undrained 
(CU or R) test procedures with pore water measurements for fine-grained soils.  The shear strength 
parameters used in this example are shown in the table at the top of Figure F-15.  Samples of the embankment 
materials would be prepared by compacting samples at appropriate densities and moisture contents.  For the 
natural foundation soils, test specimens would be obtained by undisturbed sampling. 
 
 b. Water pressures.  The pore water pressures for the steady seepage condition were characterized by the 
piezometric line shown in Figure F-15.  The piezometric line begins at the reservoir surface at the point where 
the reservoir intersects the fine-grained embankment soil (beneath the rip-rap), slopes downward to intersect 
the inclined chimney drain, then follows along the bottom side of the chimney drain until it reaches the 
elevation of the tailwater (el 22.5) and, finally, extends horizontally to the downstream face of the slope at the 
tailwater level.  Pore water pressures are calculated for each slice by multiplying the vertical distance between 
the center of the base of the slice and the piezometric line by the unit weight of water.  Alternatively, a more 
rigorous seepage analysis could have been performed and the pore water pressure from this analysis used in 
the computations.  For the slip surface and slices illustrated in Figure F-16 there is only water on the external 
surface of the slope above the last slice, Slice 9.  The external water load on the last slice is calculated and 
included in the computations for the factor of safety. 
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Figure F-13.   Example calculations for end of construction stability condition – Modified Swedish Method –  
            numerical computations for graphical solution 
 
 c. Unit weights.  Total unit weights are used for all soils.  Total unit weights should always be used 
regardless of whether the shear strength is represented using total or effective stresses.  The total unit weights 
for the example problem are shown in the table at the top of Figure F-15. 
 
 d. Slip surface and slices.  The circular slip surface shown in Figure F-16 was used for the example 
stability calculations.  This surface is not the most critical slip surface.  The factor of safety for an infinite 
slope failure in the upper part of the slope (F = 1.68) is lower than the factor of safety (F = 2.01) for the slip 
surface shown in Figure F-16.  The infinite slope slip surface is very shallow, however, and the factor of 
safety for that failure mechanism is of less significance with respect to the safety of the embankment than the 
slip surface shown in Figure F-16.  The soil above the slip surface is divided into the nine slices shown in 
Figure F-16.  The same circle and slices are used for both the Simplified Bishop and the Modified Swedish 
Method analyses. 
 
 e.  Simplified Bishop Method.  Calculations performed using the Simplified Bishop Method are shown 
in Figure F-17.  Slices 4 through 9 contain both embankment and foundation soil and were divided into two 
sections to calculate the slice weight.  The average height in each soil was determined and used to compute 
the area and weight for that portion of the slice.  The weights of two parts of the slices were then added to  
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Figure F-14.   Example calculations for end of construction stability condition – Modified Swedish Method – force 
polygons for graphical solution 
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Figure F-15.   Slope for example steady seepage computations 
 
compute the total slice weight.  The bottoms of Slices 1 through 3 are located in the embankment and these 
slices were assigned the shear strength properties of the embankment soil (c' = 0, φ' = 34 degrees).  The 
bottoms of slices 4 through 9 are located in the foundation soil and these slices were assigned the shear 
strength properties of the foundation (c' = 0, φ' = 35 degrees).  Computations are shown in Columns 22 and 23 
of the table in Figure F-17a for the final value of the factor of safety (F = 2.01).  Computations were also 
performed for trial values of the factor of safety of 1.5, 2.0, and 2.5.  The computed values are plotted versus 
the assumed values in Figure F-17b.  The calculated values varied only slightly with the assumed value, as 
shown in Figure F-17b. 
 
 f. Modified Swedish Method – numerical solution.  Calculations using the numerical solution for the 
Modified Swedish Method are summarized in Figure F-18.  For this example the interslice force inclination 
was assumed to be equal to the average embankment slope.  The average embankment slope is 2.8 
(horizontal) to 1 (vertical).  The side force inclination used in the calculations was θ = arctan (1/2.8) 
= 19.7 degrees.  Except for the forces from water pressures, most of the calculations and quantities shown in 
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Figure F-16. Circular slip surface and slices used for example computations for steady-state seepage 
 
the table in Figure F-18 are the same as the ones used previously for the Simplified Bishop Method.  The 
interslice forces, Z, are considered to be the effective forces and the water pressures on the sides of the slices 
are calculated independently.  The calculations for the water pressures on the sides and top of the slices are 
shown in Columns 8 through 17 in the table in Figure F-18a.  Calculation of the interslice forces is 
summarized in Column 23 in Figure F-18a for the final value of the factor of safety (F = 2.07), which satisfies 
force equilibrium.  Calculations were also performed for three trial values of factor of safety F = 1.75, 2.00, 
and 2.25.  The force imbalance for each assumed value of factor of safety is plotted versus the factor of safety 
in Figure F-18b.  It can be seen that a value of F of 2.07 results in zero force imbalance. 
 
 g. Modified Swedish Method – graphical solution.  Calculations using the graphical solution for the 
Modified Swedish Method are shown in Figures F-19, F-20, and F-21.  The necessary numerical 
computations and the variation in error of closure with the assumed factor of safety are shown in Figure F-19.  
The force vector diagrams for the resultants of the forces due to water pressures and the weight of the slice 
(R1, R2, etc)  are shown in Figure F-20.  Finally, the equilibrium force polygons are shown in Figure F-21 for 
the final solution (F = 2.07), where the force polygons close without significant force imbalance. 



EM 1110-2-1902 
31 Oct 03 

 
F-28 

 Fi
gu

re
 F

-1
7.

   
Sa

m
pl

e 
ca

lc
ul

at
io

ns
 fo

r s
te

ad
y-

st
at

e 
se

ep
ag

e 
– 

Si
m

pl
ifi

ed
 B

is
ho

p 
M

et
ho

d 



EM 1110-2-1902 
31 Oct 03 

 
  F-29 

 Fi
gu

re
 F

-1
8.

   
Sa

m
pl

e 
ca

lc
ul

at
io

ns
 fo

r s
te

ad
y-

st
at

e 
se

ep
ag

e 
– 

M
od

ifi
ed

 S
w

ed
is

h 
M

et
ho

d 
– 

nu
m

er
ic

al
 s

ol
ut

io
n 



EM 1110-2-1902 
31 Oct 03 

 
F-30 

 

 Fi
gu

re
 F

-1
9.

   
Sa

m
pl

e 
ca

lc
ul

at
io

ns
 fo

r s
te

ad
y-

st
at

e 
se

ep
ag

e 
– 

M
od

ifi
ed

 S
w

ed
is

h 
M

et
ho

d 
– 

gr
ap

hi
ca

l s
ol

ut
io

n 
- n

um
er

ic
al

 v
al

ue
s 



EM 1110-2-1902 
31 Oct 03 

 
  F-31 

 
 
Figure F-20. Sample calculations for steady-state seepage – Modified Swedish Method – graphical solution –  
   resultant force (R) diagrams 
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 Figure F-21. Sample calculations for steady-state seepage – Modified Swedish Method – graphical 
   solution – force equilibrium polygons 


